Asymmetric Synthesis of 2,3-Dihydro-4-pyranones by Reaction of Chiral 3-Alkoxycyclobutanone and Aldehydes

ORGANIC LETTERS 2010 Vol. 12, No. 21 4984–4987

Shoko Negishi, Hiroyuki Ishibashi, and Jun-ichi Matsuo*

School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

jimatsuo@p.kanazawa-u.ac.jp

Received September 8, 2010

ABSTRACT

Chiral cyclobutanone which had ethyl L-lactate as a chiral auxiliary at the 3-position reacted with aldehydes to give 2,3-dihydro-4-pyranones in up to 93% ee by combined use of titanium(IV) chloride and tin(II) chloride.

Chiral pyrans are versatile building blocks for the synthesis of many biologically active compounds, such as pheromones, antitumor agents, and terpenoids.¹ Chiral dihydropyranones **1** (Figure 1, R¹, R² = H) have been prepared by enantioselective hetero-Diels–Alder (HDA) reactions² between siloxydienes and aldehydes by using various chiral Lewis acid catalysts such as BINOL–metal (Mg,^{3a} Ti,^{3b} Zn,^{3c} or Al^{3d}) complexes, Cu(II)^{4a} or Rh(II)^{4b} carboxamidates, and salen– metal (Cr(III) or Mn(III)) complexes.^{5a–c} Chiral organocatalysts⁶ such as TADDOL ($\alpha, \alpha, \alpha', \alpha'$ -tetraaryl-1,3-dioxo-

(4) (a) Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.; Jørgensen, K. A. J. Am. Chem. Soc. **1998**, *120*, 8599. (b) Doyle, M. P.; Phillips, I. M.; Hu, W. J. Am. Chem. Soc. **2001**, *123*, 5366.

(5) (a) Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem. **1998**, 63, 403. (b) Berkessel, A.; Vogl, N. Eur. J. Org. Chem. **2006**, 5029. (c) Aikawa, K.; Irie, R.; Katsuki, T. Tetrahedron **2001**, 57, 845.

10.1021/ol1021355 © 2010 American Chemical Society Published on Web 10/05/2010

Figure 1. 2,3-Dihydro-4-pyranones (1–3) and synthetic intermediate of pederin.

lane-4,5-dimethanol),^{7a,b} BAMOL (1,1'-biaryl-2,2'-dimethanol),^{7c} or oxazolines,^{7d} which activate aldehydes through hydrogen bonds, have also promoted enantioselective HDA reactions between 1-amino-3-siloxy-1,3-butadienes⁸ and al-

⁽¹⁾ Smith, A. B.; Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008, 41, 675.

⁽²⁾ For a representative review on the asymmetric HDA reaction, see: Jørgensen, K. Angew. Chem., Int. Ed. 2000, 39, 3558.

^{(3) (}a) Du, H.; Zhang, X.; Wang, Z.; Bao, H.; You, T.; Ding, K. *Eur. J. Org. Chem.* **2008**, 2248. (b) Mikami, K.; Motoyama, Y.; Terada, M. *J. Am. Chem. Soc.* **1994**, *116*, 2812. (c) Du, H.; Long, J.; Hu, J.; Li, X.; Ding, K. *Org. Lett.* **2002**, *4*, 4349. (d) Maruoka, K.; Itoh, T.; Shirasaka, T.; Yamamoto, H. J. Am. Chem. Soc. **1988**, *110*, 310.

⁽⁶⁾ Recent review: Merino, P.; Marqués-López, E.; Tejero, T.; Herrera, R. P. Synthesis 2010, 1.

dehydes. Synthesis of dihydropyranones **2** bearing alkyl groups at their 3-position ($R^1 = alkyl$, $R^2 = H$) is more difficult, and only a few methods have been reported for their preparation by using dirhodium(II) chiral carboxamidate^{9a} catalysts, Cu(II) bisoxazoline,^{9b} or BINOL-metal (Al^{3d} or Zr^{9c}) complexes. Chiral dihydropyranones **3** having dialkyl groups at their 3-position are seen in the structure of natural products such as the pederin family of natural products.¹⁰ However, preparation of chiral dihydropyranones **3** needs many steps which include asymmetric aldol reaction.^{11a,b}

We have reported a Lewis acid-catalyzed reaction between 3-alkoxycyclobutanones **4** and aldehydes¹² to afford various types of 2,3-dihydro-4-pyranones **7** (Scheme 1). A zwitterionic

Scheme 1. Lewis Acid-Catalyzed Reaction between Cyclobutanone **4** and Aldehyde to Dihydropyranone **7**

intermediate **5** was generated by Lewis acid-catalyzed ring opening of 3-alkoxycyclobutanone **4**. Compound **6** was formed by reaction of **5** and aldehyde, and elimination of alcohol from adduct **6** gave dihydro-4-pyranone **7**. It was then thought that introducing a chiral auxiliary into the 3-alkoxy group of cyclobutanone 4^{13} would give chiral dihydropyranone **7**.

First, screening for an effective chiral auxiliary for asymmetric induction between 3-alkoxycyclobutanone **4** and aldehyde was carried out by reaction between cyclobutanone **8a**–**g** and benzaldehyde in the presence of titanium(IV) chloride (Table 1). Reaction of cyclobutanones **8a** and **8b**,

Table 1. Effect of Chiral Auxiliary on DiastereoselectiveCycloaddition between Cyclobutanone 8a-g and Benzaldehyde

^{*a*} Diastereomer ratios: **8a** (49:51), **8b** (45:55), **8c** (60:40), **8d** (36:64), **8e** (31:69), **8f** (36:64), **8g** (15:85). ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC. For the absolute configuration, see the text. ^{*d*} The reaction was carried out at -20 to 0 °C.

which were prepared from (-)-menthol and (S)-1-(benzoxy)propane-2-ol, respectively, gave dihydro-4-pyranone 9 in low ee's (7-3% ee, entries 1 and 2). Moderate to good asymmetric induction was observed in the reaction of cyclobutanones 8c-e, which were derived from L-lactic esters (44-79% ee, entries 3-5). The reaction of cyclobutanones 8f and 8g, which were prepared from L-malic acid dimethyl ester and D-pantolactone, afforded cycloadduct 9 in 58% and 19% ee, respectively (entries 6 and 7). Therefore, L-ethyl lactate was chosen as a chiral auxiliary for the present asymmetric reaction.

The chiral cyclobutanone **8c** was prepared from L-ethyl lactate in three steps (Scheme 2). 1-Ethoxyethyl ether of L-ethyl lactate **10** was prepared in 92% yield by reaction of L-ethyl lactate and ethyl vinyl ether in the presence of a catalytic amount of TFA. Treating **10** with triethylamine and TMSOTf gave vinyl ether **11** (79% yield).¹⁴ [2 + 2]

^{(7) (}a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. *Nature* **2003**, 424, 146. (b) Anderson, C. D.; Dudding, T.; Gordillo, R.; Houk, K. N. *Org. Lett.* **2008**, 10, 2749. (c) Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. *J. Am. Chem. Soc.* **2005**, 127, 1336. (d) McManus, H. A.; Guiry, P. J. *Chem. Rev.* **2004**, 104, 4151.

⁽⁸⁾ Huang, Y.; Rawal, V. H. Org. Lett. 2000, 2, 3321.

^{(9) (}a) Anada, M.; Washio, T.; Shimada, N.; Kitagaki, S.; Nakajima,
M.; Shiro, M.; Hashimoto, S. Angew. Chem., Int. Ed. 2004, 43, 2665. (b)
Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.; Jørgensen, K. A. J. Am. Chem. Soc. 1998, 120, 8599. (c)
Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. Org. Lett. 2002, 4, 1221.

⁽¹⁰⁾ Piel, J.; Butzke, D.; Fusetani, N.; Hui, D.; Platzer, M.; Wen, G.; Matsunaga, S. J. Nat. Prod. **2005**, 68, 472.

^{(11) (}a) Brown, L. E.; Landaverry, Y. R.; Davies, J. R.; Milinkevich, K. A.; Ast, S.; Carlson, J. S.; Oliver, A. G.; Konopelski, J. P. *J. Org. Chem.* **2009**, *74*, 5405. (b) Kocienski, P.; Narquizian, R.; Raubo, P.; Smith, C.; Farrugia, L. J.; Muir, K.; Boyle, F. T. *J. Chem. Soc., Perkin Trans. 1* **2000**, 2357.

⁽¹²⁾ Matsuo, J.; Sasaki, S.; Tanaka, H.; Ishibashi, H. J. Am. Chem. Soc. **2008**, 130, 11600.

^{(13) (}a) Darses, B.; Greene, A. E.; Coote, S. C.; Poisson, J.-F. Org. Lett. **2008**, *10*, 821. (b) Delair, P.; Kanazawa, A. M.; de Azevedo, M. B. M.; Greene, A. E. Tetrahedron: Asymmetry **1996**, *7*, 2707.

⁽¹⁴⁾ Dujardin, G.; Rossignol, S.; Brown, E. Tetrahedron Lett. 1995, 36, 1653.

Scheme 2. Preparation of Cyclobutanone 8c

Cycloaddition by using vinyl ether **11**, isobutyryl chloride, and triethylamine afforded cyclobutanone **8c** in 67% yield as a mixture of two diastereomers (60:40).

Interestingly, it was proven that addition of some metal chlorides in a titanium(IV) chloride-promoted asymmetric reaction between 8c and benzaldeyde improved the enantioselectivity of product 9 (Table 2). The use of copper(II)

 Table 2. Effect of Metal Chloride on Diastereoselective

 Cycloaddition between Chiral Cyclobutanone 8c and
 Benzaldehyde

0	$\frac{1}{8c}$ 3 equiv)	TiCl₄ (1. Metal c (1.3 e Ph CH equiv) –20 °C	3 equiv) hloride $Q_{2}Cl_{2}$ $Q_{2}Cl_{2}Cl_{2}$ $Q_{2}Cl_{2}C$	Y _{Ph} 9		
entry	metal chloride	time (h)	yield $(\%)^a$	$\% \ \mathrm{ee}^b$		
1	none	3.0	60	79		
2	CuCl_2	6.0	26	81		
3	ZnCl_2	1.5	58	83		
4	SnCl_2	8.0	70	88		
^a Isolated yield. ^b Determined by chiral HPLC.						

chloride and zinc(II) chloride slightly improved the ee of adduct **9**, but yields were decreased (entries 2 and 3). Among the metal chlorides tested, the use of tin(II) chloride gave **9** in 70% yield with the best enantioselectivity (88% ee, entry 4). The role of tin(II) chloride in this reaction has not yet been clarified. The use of each separated diastereomer of **8c** gave almost the same results as those obtained by employing a mixture of two diastereomers of **8c**.

The absolute configuration of **9** was determined by comparison with the specific rotation of known diol 15^{15} (Scheme 3). Baeyer–Villiger oxidation of **12**, which was prepared by reaction of compound **9** (88% ee) with methanolic hydrogen chloride,¹⁶ gave lactone **13** in 90% yield. Reduction of **13** with lithium aluminum hydride gave diol

(16) Mori, K.; Mori, H. Tetrahedron 1987, 43, 4097.

Scheme 3. Determination of the Absolute Configuration of 9

14 in 78% yield, and hydrolysis of 14 gave diol 15 in 99% yield. The specific rotation of obtained 15 ($[\alpha]^{26}_{D} = -18.4$) suggested that its absolute configuration was R.¹⁵

Next, the scope and limitations of diastereoselective reaction of **8c** were investigated by using various aldehydes (Table 3). When electron-withdrawing groups were substi-

entry	aldehyde	time (h)	yield (%) ^a	% ee ^b
	O P'			
1	$R' = CF_3(16a)$	12.5	68	89
2	$\mathbf{R'} = \mathbf{F}(\mathbf{16b})$	10.0	67	91
3	$\mathbf{R'} = \mathbf{Cl}(\mathbf{16c})$	8.0	75	92
4	$\mathbf{R'} = \mathbf{Br}(\mathbf{16d})$	12.0	64	90
5	R' = I(16e)	12.5	78	88
6	$\mathbf{R}' = \mathbf{Me} \left(\mathbf{16f} \right)$	8.0	59	77
7	R' = Ph(16g)	11.5	70	77
8	(16h)	5.0	60	93
9	(16i)	6.0	58	75
10	0 (16j)	10	43	78
11	0 Ph (16k)	6.5	47	76

^{*a*} Isolated yield. ^{*b*} Determined by chiral HPLC analysis. The absolute configuration was deduced from compound (R)-9.

tuted at the para-position of the phenyl group of benzaldehyde 16a-e, the corresponding 2,3-dihydropyranones 17a-ewere obtained in good yields (64–78%) and with high ee's

⁽¹⁵⁾ Choudary, B. M.; Chowdari, N. S.; Kantam, M. L.; Raghavan, K. V. J. Am. Chem. Soc. **2001**, *123*, 9220.

(88–92% ee, entries 1–5). On the other hand, aldehydes bearing a methyl or phenyl group at the para-position of the phenyl group gave lower ee's (77% ee, entries 6 and 7). In comparison with 2-naphthylaldehyde **16h**, which gave cycloadduct **17h** in 60% yield and 93% ee (entry 9), the reaction with 1-naphthylaldehyde **16i** gave the desired adduct **17i** in a lower yield (58%) and with lower ee's (75% ee, entry 10). These results suggest that this reaction was influenced by steric effects. Reactions between **8c** and aliphatic aldehydes **16j** and **16k** gave the desired products **17j** and **17k** in moderate yields (43% and 47%) and with good ee's (76% and 78% ee, entries 10 and 11).

In summary, chiral 2,3-dihydro-4-pyranones were prepared by a diastereoselective asymmetric reaction of aldehyde and 3-alkoxycyclobutanone bearing L-ethyl lactate as a chiral auxiliary. It is expected that these chiral cyclobutanones will be effective for other reactions with imines,¹⁷ allylsilanes,¹⁸ and silyl enol ethers¹⁹ to afford the corresponding chiral dihydropyranones and cyclohexanones.

Acknowledgment. This work was supported by a Grant from Suntory Institute for Bioorganic Research and a Grantin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supporting Information Available: Detailed experimental procedures and full spectroscopic characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL1021355

⁽¹⁷⁾ Matsuo, J.; Okado, R.; Ishibashi, H. Org. Lett. 2010, 12, 3266.
(18) Matsuo, J.; Sasaki, S.; Hoshikawa, T.; Ishibashi, H. Org. Lett. 2009,

^{11, 3822.}

⁽¹⁹⁾ Matsuo, J.; Negishi, S.; Ishibashi, H. Tetrahedron Lett. 2009, 50, 5831.